BRIEF COMMUNICATIONS

Synthesis and Magnetic Property of NaFe₃V₉O₁₉

Y. KANKE,* E. TAKAYAMA-MUROMACHI, Y. UCHIDA, K. KATO, and S. TAKEKAWA

National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan

Received June 17, 1991

A new phase, NaFe₃V₉O₁₉, was found. It crystallizes hexagonal with $a = 5.8400 \pm 0.0001$ and $c = 22.8058 \pm 0.0005$ Å. Its possible space groups are $P6_3/mmc$, P62c, or $P6_3mc$. The composition and the crystal data indicate that NaFe₃V₉O₁₉ is isostructural with magnetoplumbite-type compounds. NaFe₃V₉O₁₉ shows a uniaxial magnetism with the easy axis of magnetization parallel to [001] below the transition temperature, around 240 K. © 1991 Academic Press, Inc.

Introduction

Both $BaFe_{12}O_{19}$ and $LaFe_{12}O_{19}$ take magnetoplumbite-type crystal structures (hexagonal, $P6_3/mmc$) (1) and show uniaxial ferrimagnetisms (2–7) with the easy axes of magnetization parallel to [001], below the Néel temperatures of 723 K (8) and 695 K (9), respectively. Their resistivity at room temperature is $10^8 \Omega$ cm for $BaFe_{12}O_{19}$ and $10^1 \Omega$ cm for $LaFe_{12}O_{19}$ (10). Their magnetic structures have been described based on the localized *d*-electron models (2–7), though $LaFe_{12}O_{19}$ has rather low resistivity and contains mixed-valent iron ions.

 NaV_6O_{11} was first synthesized by de Roy et al. (11) and revealed to be structurally related to magnetoplumbite (12). NaV_6O_{11} crystallizes in $P6_3/mmc$ (12), shows a magnetic phase transition at 64.2 K (13, 14), and exhibits uniaxial magnetic anisotropy with the easy axis of magnetization parallel to

Copyright © 1991 by Academic Press, Inc. All rights of reproduction in any form reserved. [001] below the transition temperature (14). The spontaneous magnetization of NaV₆O₁₁ at 5 K is 1.7 μ_B per formula unit (14). The resistivity of NaV₆O₁₁ perpendicular to [001] shows an anomaly at the transition temperature (13, 14) as in the case with the resistivity of ferromagnetic metals, while that parallel to [001] does not show such an anomaly (14). We indicated that itinerant *d*-electrons play some important roles in magnetism of NaV₆O₁₁ (14), in contrast to BaFe₁₂O₁₉ and LaFe₁₂O₁₉ (2–7).

 SrV_6O_{11} and $SrT_xV_{6-x}O_{11}$ (T = Ti, Cr, and Fe) were found and confirmed to be isostructural with NaV₆O₁₁ (12, 15). The T ions do not localize at a particular site in $SrT_xV_{6-x}O_{11}$ phases (15).

In the present study, a new magnetoplumbite-type phase, NaFe₃V₉O₁₉, was found. Its magnetic property and electrical resistivity were studied using sintered samples. Though a number of magnetoplumbitetype phases ($AB_{12}O_{19}$) have so far been investigated, the formal charge of A ion has

^{*} To whom correspondence should be addressed. 0022-4596/91 \$3.00

BRIEF COMMUNICATIONS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I/I_0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2
1 0 3 4.207 4.211 20 3 0 6 1.5412 1.5411 2 2 2 14 1.0872 1.0872 0 0 6 3.797 3.801 15 2 0 12 1.5192 1.5193 11 4 1 4 1.0836 1.0835 1 0 5 3.385 3.387 14 2 2 0 1.4599 1.4600 19 4 0 11 1.0795 1.0795 1 0 6 3.0373 3.0385 11 2 0 13 1.4415 1.4414 7 3 2 8 1.0746 1.0747 1 0 2.9192 2.9200 20 0 16 1.4253 1.4254 2 1 1 20 1.0621 1.0622 0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1.0561 1.0599 <td>2</td>	2
0 0 6 3.797 3.801 15 2 0 12 1.5192 1.5193 11 4 1 4 1.0836 1.0835 1 0 5 3.385 3.387 14 2 2 0 1.4599 1.4600 19 4 0 11 1.0795 1.0795 1 0 6 3.0373 3.0385 11 2 0 13 1.4415 1.4414 7 3 2 8 1.0746 1.0747 1 0 2.9192 2.9200 20 0 0 16 1.4253 1.4254 2 1 1 20 1.0621 1.0622 0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0526	3
1 0 5 3.385 3.387 14 2 2 0 1.4599 1.4600 19 4 0 11 1.0795 1.0795 1 0 6 3.0373 3.0385 11 2 0 13 1.4415 1.4414 7 3 2 8 1.0746 1.0747 1 1 0 2.9192 2.9200 20 0 16 1.4253 1.4254 2 1 1 20 1.0621 1.0622 0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0561 1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527	3
1 0 6 3.0373 3.0385 11 2 0 13 1.4415 1.4414 7 3 2 8 1.0746 1.0747 1 1 0 2.9192 2.9200 20 0 0 16 1.4253 1.4254 2 1 1 20 1.0621 1.0622 0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0561 1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527 2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366 <td>4</td>	4
1 1 0 2.9192 2.9200 20 0 16 1.4253 1.4254 2 1 1 20 1.0621 1.0622 0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0561 1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527 2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366	1
0 0 8 2.8495 2.8507 43 2 1 11 1.4056 1.4054 1 4 1 6 1.0598 1.0599 1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0561 1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527 2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366	1
1 0 7 2.7380 2.7389 100 3 1 3 1.3795 1.3794 1 2 1 18 1.0562 1.0561 1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527 2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366	1
1 1 4 2.5980 2.5990 67 1 0 16 1.3722 1.3719 4 4 0 12 1.0526 1.0527 2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366	2
2 0 0 2.5293 2.5288 4 2 0 14 1.3693 1.3694 10 0 0 22 1.0367 1.0366	1
	4
2 0 1 2.5127 2.5134 14 3 1 4 1.3622 1.3621 1 4 0 13 1.0258 1.0257	1
1 0 8 2.4832 2.4834 30 2 1 12 1.3479 1.3478 3 2 1 19 1.0167 1.0165	1
2 0 2 2.4671 2.4688 5 3 1 5 1.3403 1.3407 <1 3 0 18 1.0129 1.0128	3
2 J 3 2.3992 2.3995 17 2 0 15 1.3030 1.3030 1 5 0 1 1.0106 1.0105	<1
1 1 6 2.3153 2.3156 13 2 2 8 1.2996 1.2995 3 5 0 2 1.0077 1.0076	<1
0 0 10 2.2812 2.2806 1 1 0 17 1.2964 1.2967 5 4 0 14 0.9986 0.9988	1
2 0 5 2.2110 2.2116 17 2 1 13 1.2926 1.2925 1 3 2 12 0.9904 0.9903	<1
2 0 6 2.1049 2.1054 16 3 1 7 1.2883 1.2884 4 2 1 20 0.9794 0.9793	1
1 1 8 2.0399 2.0398 1 1 1 1 16 1.2811 1.2809 1 1 0 23 0.9729 0.9730	<1
2 0 7 1.9980 1.9976 4 0 0 18 1.2672 1.2670 1 3 1 17 0.9695 0.9695	1
1 0 11 1.9184 1.9183 2 3 1 8 1.2589 1.2586 2 5 0 7 0.9659 0.9660	1
0 0 12 1.9006 1.9005 1 2 0 16 1.2414 1.2417 1 4 2 1 0.9549 0.9550	1
2 0 8 1.8917 1.8917 2 1 0 18 1.2292 1.2290 6 5 0 8 0.9532 0.9533	1
2 1 3 1.8531 1.8539 1 4 0 5 1.2185 1.2184 <1 0 0 24 0.9502 0.9502	1
2 0 9 1.7897 1.7900 2 4 0 6 1.1998 1.2000 1 4 2 3 0.9483 0.9483	1
1 0 12 1.7785 1.7790 11 2 0 17 1.1852 1.1851 1 3 3 6 0.9428 0.9429	<1
2 1 5 1.7629 1.7630 2 4 0 7 1.1790 1.1787 <1 3 1 18 0.9403 0.9402	1
2 1 6 1.7079 1.7078 2 1 0 19 1.1677 1.1679 3 1 0 24 0.9338 0.9339	1
2 0 10 1.6935 1.6936 8 1 1 18 1.1623 1.1623 7 4 2 6 0.9269 0.9269	<1
3 0 0 1.6853 1.6859 3 3 2 3 1.1471 1.1470 <1 2 0 23 0.9231 0.9231	1
1 0 13 1.6568 1.6574 1 0 0 20 1.1403 1.1403 5 3 1 19 0.9120 0.9120	1
2 1 7 1.6487 1.6487 18 3 1 12 1.1285 1.1286 1 1 1 24 0.9036 0.9036	<1
2 2 20 0.8987 0.8987	2

TABLE I

been restricted to between +2 and +3. To the best of our knowledge, the main cation for *B* has been restricted to Al^{3+} , Fe^{3+} , and Ga^{3+} .

Experimental

 V_2O_4 was prepared by heating an equimolar mixture of V_2O_5 (99.9%) and V_2O_3 in a sealed silica tube at 1273 K for 3 days. The V_2O_3 had been obtained by reducing the V_2O_5 in hydrogen at 1073 K. β -NaFeO₂ was prepared by heating an equimolar mixture of Na₂CO₃ (99.9%) and Fe₂O₃ (99.9%) at 1073 K for 1 day with an intermediate grinding.

 β -NaFeO₂, Fe₂O₃, V₂O₄, and V₂O₃ were mixed in a 1 : 1 : 0.5 : 4 molar ratio. About 3.0 g of the mixture were placed in a platinum capsule, sealed in an evacuated silica tube,

TABLE II LATTICE PARAMETERS OF NaFe₃V₉O₁₉ and Related Compounds

Compound	$a/{ m \AA}$	c/Å
NaFe ₃ V ₉ O ₁₉	5.8400(1)	22.8058(5)
SrFe ₁₂ O ₁₉ ^a	5.8868(5)	23.037(2)
BaFe ₁₂ O ₁₉ ^b	5.893	23.194
LaFe ₁₂ O ₁₀ ^c	5.879	22.8807
$CaAl_{12}O_{19}^d$	5,5579(6)	21.905(20)
SrAl ₁₂ O ₁₉ e	5.585	22.07
SrGa ₁₂ O ₁₉ ^f	5.796	22.84

^a From Ref. (16).

^b From Ref. (1).

^c From Ref. (10).

^d From Ref. (17).

^e From Ref. (18).

^f From Ref. (19).

and then heated at 993 K for 1 day. After it was cooled to room temperature, the product was ground and identified by X-ray powder diffraction with $CuK\alpha$ radiation. This procedure was repeated until its X-ray powder pattern changed no longer. Three heating runs (1 + 3 + 3 days) were required to obtain pure NaFe₃V₉O₁₉. The formation of the phase became sluggish at 973 K and it required two weeks of heating period to obtain a pure sample. The phase decomposed above 1073 K. To prepare the specimens for the magnetization and resistivity measurements, powdered NaFe₃V₉O₁₉ was pressed into a pellet and heated at 993 K in the same way as mentioned above. EPMA measurement was carried out using NaV_6O_{11} and YFeO₃ as standard materials.

The magnetization of $NaFe_3V_9O_{19}$ was measured by a SQUID magnetometer using 6.84 mg of the above-mentioned sintered sample. The resistivity of $NaFe_3V_9O_{19}$ was measured by the standard four-probe method.

Results and Discussion

The X-ray powder diffraction pattern of $NaFe_3V_9O_{19}$ is shown in Table I. All of the

reflections can be indexed applying a hexagonal crystal system and space group $P6_3mc$, P62c, or $P6_3/mmc$. EPMA measurement showed its composition to be Na: Fe: V =1:2.8(2):9.0(4), which confirms that the phase belongs to the magnetoplumbite. A detailed Rietveld analysis of the neutron powder diffraction data is now in progress. Preliminary refinement also supported the magnetoplumbite-type structure for Na $Fe_3V_9O_{19}$. The compositional range of x for $NaFe_xV_{12-x}O_{19}$ was examined by the X-ray powder diffraction of the samples with x =2.8, 3.0, and 3.2. The sample with x = 2.8was single-phased, however, there were no detectable shifts between the diffraction data of "NaFe_{2.8}V_{9.2}O₁₉" and those of Na $Fe_3V_9O_{19}$. The sample with x = 3.2 contained a corundum-type phase, however, there were slight but obvious shifts between the diffraction data of $NaFe_3V_9O_{19}$ and those of "NaFe_{3.2}V_{8.8}O₁₉." At the present stage, we can not conclude whether or not there is a homogeneity range of x for $NaFe_x$ $V_{12-x}O_{19}$. The lattice parameters of Na $Fe_3V_9O_{19}$ are listed in Table II, together with those of known magnetoplumbite-type phases.

Typical grains of NaFe₃V₉O₁₉ as obtained

FIG. 1. Magnetization vs. external magnetic field of a sintered $NaFe_3V_9O_{19}$ sample at 5 K.

FIG. 2. Magnetization vs. temperature of a sintered $NaFe_3V_9O_{19}$ sample at 4 T.

were thin hexagonal plates of ca. 10 μ m in diameter. A microscopic observation at low temperatures showed that the grains were attracted by a magnet and their [001] directions were oriented parallel to the lines of magnetic force. Figure 1 shows the magnetization of a sintered NaFe₃ V_9O_{19} sample vs. external magnetic field at 5 K. The data resulted in a hysteresis loop and the coercive force was ca. 14 kOe. Figure 2 shows the temperature dependence of the magnetization in an external magnetic field of 4 T. The above results show that $NaFe_3V_9O_{19}$ exhibits a uniaxial magnetism with the easy axis of magnetization parallel to [001] below the transition temperature, around 240 K. The saturated magnetization for the sintered NaFe₃V₉O₁₉ is 3.9 $\mu_{\rm B}$ per formula unit. The transition temperature is an intermediate between those of NaV_6O_{11} (13, 14) and the magnetoplumbite ferrites (9) described above. Figure 3 shows the logarithmic resistivity of a sintered NaFe₃V₉O₁₉ sample as a function of temperature. The sintered sample showed semiconductor-like behavior and no anomaly was observed around the transition temperature. The resistivity at 299 K, 4.7 Ω cm, is close to that of La $Fe_{12}O_{19}$ at room temperature, 10 Ω cm (10).

FIG. 3. Logarithmic resistivity vs. temperature of a sintered NaFe₃V₉O₁₉ sample.

The resistivity data suggest that the magnetism of NaFe₃V₉O₁₉ can be described based on the localized *d*-electron model as in the case with the magnetoplumbite ferrites (2-7), but in contrast to NaV₆O₁₁ (14). Further studies on a single crystal of Na Fe₃V₉O₁₉ are required to discuss the magnetism of this phase in detail and to answer the question of whether or not itinerant electrons play some roles in its magnetism.

References

- W. D. TOWNES, J. H. FANG, AND A. J. PERROTTA, Z. Kristallogr. 125, S.437 (1967).
- 2. J. S. VAN WIERINGEN, *Philips Tech. Rev.* 28, 33 (1967).
- 3. R. L. STREEVER, Phys. Rev. 186, 285 (1969).
- 4. F. K. LOTGERING, J. Phys. Chem. Solids 35, 1633 (1974).
- 5. A. M. VAN DIEPEN AND F. K. LOTGERING, J. Phys. Chem. Solids 35, 1641 (1974).
- CH. SAUER, U. KÖBLER, AND W. ZINN, J. Phys. Chem. Solids 39, 1197 (1978).
- F. K. LOTGERING, P. R. LOCHER, AND R. P. VAN STAPELE, J. Phys. Chem. Solids 41, 481 (1980).
- R. S. TEBBLE AND D. J. CRAIK, "Magnetic Materials," Chap. 10, p. 362, Wiley, New York (1969).
- A. AHARONI AND M. SHIEBER, Phys. Rev. 123, 807 (1961).
- 10. V. L. MORUZZI AND M. W. SHAFER, J. Am. Ceram. Soc. 43, 367 (1960).

- M. E. DE ROY, J. P. BESSE, R. CHEVALIER, AND M. GASPERIN, J. Solid State Chem. 67, 185 (1987).
- 12. Y. KANKE, K. KATO, E. TAKAYAMA-MUROMACHI, AND M. ISOBE, submitted for publication.
- 13. Y. KANKE, E. TAKAYAMA-MUROMACHI, K. KATO, AND Y. MATSUI, J. Solid State Chem. 89, 130 (1990).
- 14. Y. Uchida, Y. Kanke, E. Takayama-

MUROMACHI, AND K. KATO, J. Phys. Soc. Jpn. 60, 2530 (1991).

- 15. Y. KANKE, F. IZUMI, E. TAKAYAMA-MUROMACHI, K. KATO, T. KAMIYAMA, AND H. ASANO, J. Solid State Chem., 92, 261 (1991).
- 16. JCPDS card 33-1340.
- 17. JCPDS card 38-470.
- 18. JCPDS card 26-976.
- 19. JCPDS card 26-983.